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Overview

Fourier series are series of cosine and sine terms and arise in the
important practical task of representing general periodic functions. They
constitute a very important tool in solving problems that involve ordinary
and pratical differential equations.

The theory of Fourier series is rather complicated, but the application of
these series is simple. Fourier series are, in a certain sense, more universal
than Taylor series, because many discontinuous periodic functions of
practical interest can be developed in Fourier series, but, of course, do not
have Taylor series representations.
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Jean-Baptiste Joseph Fourier (1768− 1830)

Jean-Baptiste Joseph Fourier, French physicist and mathematician, lived
and taught in Paris, accompanied Napoleon to Egypt, and was later made
prefect of Grenoble.

He utilized Fourier series in his main work Theorie analytique de la chaleur
(Analytic Theory of Heat, Paris 1822), in which he developed the theory of
heat conduction (heat equation).

These new series became a most important tool in mathematical physics
and also had considerable influence on the further development of
mathematics itself.
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Periodic Functions

A function f (x) is called periodic if it is defined for all real x and if there
is some positive number p such that

f (x + p) = f (x) for all x . (1)

This number p is called a period of f (x). The graph of such a function is
obtained by periodic repetition of its graph any interval of length p.
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Periodic Functions

Familiar periodic functions are the sine and cosine functions. We note that
the function f = c = const is also a periodic function in the sense of the
definition, because it satisfies (1) for every positive p.

Examples of functions that are not periodic are x , x2, x3, ex , cosh x , and
ln x , to mention just a few.

From (1) we have f (x + 2p) = f [(x + p) + p] = f (x + p) = f (x), etc.,
and for any integer n,

f (x + np) = f (x) for all x .

P. Sam Johnson (NIT Karnataka) Fourier Series 5 / 69



Periodic Functions

Hence 2p, 3p, 4p, . . . are also periods of f (x). Furthermore, if f (x) and
g(x) have period p, then the function

h(x) = af (x) + bg(x), for any constants a, b.

also has the period p.

If a periodic function f (x) has a smallest period p (> 0) , this is often
called the fundamental period of f (x).

For cos x and sin x the fundamental period is 2π, for cos 2x and sin 2x it is
π, and so on.

A function without fundamental period is f = const.
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Trigonometric Series

Our problem is to find a representation of various functions of period
p = 2π in terms of the simple functions

1, cos x , sin x , cos 2x , sin 2x , · · · , cos nx , sin nx , · · · . (2)

These functions have the period 2π. The series that will arise in this
connection will be of the form

a0 + a1 cos x + b1 sin x + a2 cos 2x + b2 sin 2x + . . . , (3)

where a0, a1, a2, · · · , b1, b2, · · · are real constants.

Such a series is called a trigonometric series and an and bn are called the
coefficients of the series.
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Trigonometric Series

Using the summation sign, we may write this series

a0 +
∞∑
n=1

(an cos nx + bn sin nx) . (4)

The set of functions 1, cos x , sin x , cos 2x , sin 2x , · · · , cos nx , sin nx , · · ·
from which we have made up the series (4) if often called the
trigonometric system, to have a short name for it. We see that each
term of the series (4) has the period 2π. Hence if the series (4) converges,
its sum will be a function of period 2π.

The point is that trignometric series can be used for representing any
practically important periodic function f , simple or complicated, of any
period p. (This series will then be called the Fourier series of f .)
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Exercises

1. Fundamental Period. Find the smallest positive period p of the
following functions :
cos x , sin x , cos 2x , sin 2x , cosπx , sinπx , cos 2πx , sin 2πx ,
cos nx , sin nx , cos 2πx

k , sin 2πx
k , cos 2πnx

k , sin 2πnx
k .

2. If f (x) and g (x) have period p, show that h = af + bg (a, b
constant) has the period p.

3. (Integer multiples of period) If p is a period of f (x), show that
np, n = 2, 3, · · · , is a period of f (x).

4. (Constant) Show that the function f (x) = const is a periodic
function of period p for every positive p.

5. (Change of Scale) If f (x) is a periodic function x of period p. Show
that f (ax) , a 6= 0, is a periodic function of x of period p/a, and
f (x/b) 6= 0, is a periodic function of x of period bp. Verify these
results for f (x) = cos x , a = b = 2.
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Graphs of 2π Periodic Functions

Sketch or plot the following functions f (x), which are summed to be
periodic with period 2π and, for −π < x < π, are given by the formulas

1. f (x) = x

2. f (x) = x2
3. f (x) = |x |
4. f (x) = π − |x |

5. f (x) = | sin x |
6. f (x) = e−|x |

Sketch or plot the following functions f (x), which are summed to be
periodic with period 2π and, for −π < x < π, are given by the formulas

1. f (x) =

{
x if − π ≤ x ≤ 0

0 if 0 ≤ x ≤ π

2. f (x) =

{
0 if − π ≤ x ≤ 0

x2 if 0 ≤ x ≤ π

3. f (x) =

{
−1 if − π < x < 0

1 if 0 < x < π

4. f (x) =

{
x if 0 < x < π

π − x if − π < x < 0

5. f (x) =

{
0 if − π < x < 0

e−x if 0 < x < π

6. f (x) =

{
x2 if − π < x < 0

−x2 if 0 < x < π
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Fourier Series

Fourier series arise from the practical task of representing a given periodic
function f (x) in terms of cosine and sine functions. That is,

a0 +
N∑

n=1

(an cos nx + bn sin nx) for N = 1, 2, 3, . . . .

These series are trigonometric series whose coefficient are determined from
f (x) by the “Euler formulas,” which we shall derive first.

Afterwards we shall take a look at the theory of Fourier series.
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Euler Formulas for the Fourier Coefficients

Let us assume that f (x) is a periodic function of period 2π and is
integrable over a period. Let us further assume that f (x) can be
represented by a trigonometric series.

f (x) = a0 +
∞∑
n=1

(an cos nx + bn sin nx) ; (5)

that is, we assume that this series converges and has f (x) as its sum.

Given such a function f (x), we want to determine the coefficient an and
bn of the corresponding series (5).
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Determination of the constant term a0

Integrating on both sides of (5) from −π to π we get∫ π

−π
f (x) dx =

∫ π

−π

[
a0 +

∞∑
n=1

(an cos nx + bn sin nx)

]
dx .

If term-by-term integration of the series is allowed, we obtain∫ π

−π
f (x) dx = a0

∫ π

−π
dx +

∞∑
n=1

(
an

∫ π

−π
cos nx dx + bn

∫ π

−π
sin nx dx

)
.

The first term on the right equals 2πa0. All the other integrals on the right
are zero, as can be readily seen by integration. Hence our first result is

a0 =
1

2π

∫ π

−π
f (x)dx . (6)
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Determination of the coefficients an of the cosine terms.

Similarly, we multiply (5) by cosmx , where m is any fixed positive integer,
and integrate from −π to π:∫ π

−π
f (x) cosmx dx =

∫ π

−π

[
a0 +

∞∑
n=1

(an cos nx + bn sin nx)

]
cosmx dx .

(7)
Integrating term by term, we see that the right side becomes

a0

∫ π

−π
cosmx dx +

∞∑
n=1

[
an

∫ π

−π
cos nx cosmx dx + bn

∫ pi

−π
sin nx cosmx dx

]
.

The first integral is zero.

P. Sam Johnson (NIT Karnataka) Fourier Series 14 / 69



Determination of the coefficients an of the cosine terms.

Also∫ π

−π
cos nx cosmx dx =

1

2

∫ π

−π
cos (n + m) x dx +

1

2

∫ π

−π
cos (n −m) x dx ,∫ π

−π
sin nx cosmx dx =

1

2

∫ π

−π
sin (n + m) x dx +

1

2

∫ π

−π
sin (n −m) x dx .

Integration shows that the four terms on the right are zero, except for the
last term in the first line, which equals π when n = m. Since (7) this term
is multiplied by am, the right side in (7) equals amπ. Our second result is

am =
1

π

∫ π

−π
f (x) cosmx dx , m = 1, 2, · · · (8)
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Determination of the coefficients bn of the sine terms.

We finally multiply (1) by sinmx , where m is any fixed integer, and then
integrate from −π to π:

∫ π

−π
f (x) sinmx dx =

∫ π

−π

[
a0 +

∞∑
n=1

(an cos nx + bn sin nx)

]
sinmx dx . (9)

Integrating term by term, we see that the right side becomes

a0

∫ π

−π
sinmx dx +

∞∑
n=1

[
an

∫ π

−π
cos nx sinmx dx + bn

∫ pi

−π
sin nx sinmx dx

]
.

]
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The first integral is zero. The next integral is of the kind considered
before, and is zero for all n = 1, 2, · · · . For the last integral we obtain∫ π

−π
sin nx sinmx dx =

1

2

∫ π

−π
cos (n −m) x dx −

1

2

∫ π

−π
cos (n +m) x dx .

The last term is zero. The first term on the right is zero when n 6= m and
is π when n = m.

Since in (9) this term is multiplied by bm, the right side in (9) is equal to
bmπ and our last result is

bm =
1

π

∫ π

−π
f (x) sinmx dx , m = 1, 2, · · · .
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Summary of These Calculations : Fourier Coefficients,
Fourier Series

From the derivations above, we have the so-called Euler formulas

(a) a0 =
1

2π

∫ π

−π
f (x)dx

(b) an =
1

π

∫ π

−π
f (x) cos nx dx n = 1, 2, . . .

(c) bn =
1

π

∫ π

−π
f (x) sin nx dx n = 1, 2, . . .
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Fourier Series

These numbers given by Euler formulas are called the Fourier coefficients
of f (x).

The trigonometric series

a0 +
∞∑
n=1

(an cos nx + bn sin nx) (10)

with coefficients given above is called the Fourier series of f (x).
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Example 1 (Rectangular wave).

Find the Fourier coefficients of the periodic function f (x) in the following
figure.

The formula is f (x) =

{
−k if − π < x < 0

k if 0 < x < π
and f (x + 2π) = f (x) . Functions of

this kind occur as external forces acting on mechanical systems,
electromotive forces in electric circuits, etc. (The value of f (x) at a single
point does not affect the integral; hence we can leave f (x) undefined at
x = 0 and x = ±π.)
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Rectangular wave

Solution. Since the area under the curve of f (x) between −π and π is
zero, so a0 = 0.

an =
1

π

∫ π

−π
f (x) cos nx dx =

1

π

[∫ π

−π
(−k) cos nx dx +

∫ π

0
k cos nx dx

]
=

1

π

[
−k sin nx

n

∣∣∣∣0
π

+ k
sin nx

n

∣∣∣∣π
0

]
= 0

Because sin nx = 0 at −π, 0, and π for all n = 1, 2, · · · . Similarly, we
obtain

bn =
1

π

∫ π

−π
f (x) sin nx dx =

1

π

[∫ 0

−π
(−k) sin nx dx +

∫ π

0
k sin nx dx

]
=

1

π

[
k

cos nx

n

∣∣∣∣0
−π
− k

cos nx

n

∣∣∣∣0
π

]
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Rectangular wave

Since cos (−α) = cosα and cos 0 = 1, this yields

bn =
k

nπ
[cos 0− cos (−nπ)− cos nπ + cos 0] =

2k

nπ
(1− cos nπ)

Now, cosπ = −1, cos 2π = 1, 3π = −1, etc; in general,

cos nπ =

{
−1 for odd n,

1 for even n,
and thus 1− cos nπ =

{
2 for odd n.

0 for even n.

Hence the Fourier coefficients bn of our function are

b1 = 4k
π , b2 = 0, b3 = 4k

3π , b4 = 0, b5 = 4k
5π , · · ·
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Since the an are zero, the series of f (x) is

4k

π

(
sin x +

1

3
sin 3x +

1

5
sin 5x + . . .

)
. (11)

The partial sums are

S1 =
4k

π
sin x , S2 =

4k

π

(
sin x +

1

3
sin 3x

)
, etc .

P. Sam Johnson (NIT Karnataka) Fourier Series 23 / 69



Rectangular wave
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Rectangular wave

Their graphs in the above figure seem to indicate that the series is
convergent and has the sum f (x), the given function. We notice that at
x = 0 and x = π, the points of discontinuity of f (x) , all partial sums have
the value zero, the arithmetic mean of the values −k and k of our
function. Furthermore, assuming that f (x) is the sum of the series and
setting x = π/2, we have

f
(π

2

)
= k =

4k

π

(
1− 1

3
+

1

5
−+ · · ·

)
.

1− 1

3
+

1

5
− 1

7
+− · · · =

π

4
.

This is a famous result by Leibniz (obtained in 1673 form geometrical
considerations.) It illustrates that the values of various series with constant
terms can be obtained by evaluating Fourier series at specific points.

P. Sam Johnson (NIT Karnataka) Fourier Series 25 / 69



Orthogonality of the Trigonometric System

The trigonometric system

1, cos x , sin x , cos 2x , sin 2x , · · · , cos nx , sin nx , · · ·

is orthogonal on the interval −π ≤ x ≤ π (hence on any interval of length
2π, because of periodicity). By definition, this means that the integral of
the product of any two different of these functions over that interval is
zero; in formulas, for any integers m and n 6= m we have∫ π

−π
cosmx cos nx dx = 0 (m 6= n) and

∫ π

−π
sinmx sin nx dx = 0 (m 6= n) ,

and for any integers m and n (including m = n) we have∫ π

−π
cosmx sin nx dx = 0.

This is the most important property of the trigonometric system, the key
in driving the Euler formulas (where we proved this orthogonality).
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Convergence and Sum of Fourier Series

We now present a theorem on the convergence and the sum of Fourier
series : Suppose that f (x) is any given periodic function of period 2π for
which the integrals in Euler formulas exist; for instance, f (x) is continuous
or merely piecewise continuous (continuous except for finitely many finite
jumps in the interval of integration). Then we can compute the Fourier
coefficients of f (x) and use them to form the Fourier series of f (x).

It would be nice if the series thus obtained converged and had the sum
f (x). Most functions appearing in applications are such that this is true
(except at jumps of f (x), which we discus below). In this case, in which
the Fourier series of f (x) does represent f (x), we write

f (x) = a0 +
∞∑
n=1

(an cos nx + bn sin nx)

with an equality sign.
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Convergence and Sum of Fourier Series

If the Fourier series of f (x) does not have the sum f (x) or does not
converge, one still writes

f (x) ∼ a0 +
∞∑
n=1

(an cos nx + bn sin nx)

with a tilde ∼, which indicates that the trigonometric series on the right
has the Fourier coefficients of f (x) as its coefficients, so it is the Fourier
series of f (x).

The class of functions that can be represented by Fourier series is
surprisingly large and general.
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Left-and right-hand derivatives

The left-hand limit of f (x) at x0 is defined as the limit of f (x) as x
approaches x0 from the left and is frequently denoted by f (x0 − 0) . Thus

f (x0 − 0) = lim
h→0

f (x0 − h)

as h→ 0 through positive values. The right-hand limit is denoted by
f (x0 + 0) and

f (x0 − 0) = lim
h→0

f (x0 + h)

as h→ 0 through positive values. The left-and right-hand derivatives of
f (x) at x0 are defined as the limit of

f (x0 − h)− f (x0 − 0)

−h
and

f (x0 + h)− f (x0 + 0)

h

respectively, as h→ 0 through positive values. Of course if f (x) is
continuous at x0 the last term in both numerators is simply f (x0).
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Representation by a Fourier series

Theorem 2.

If a periodic function f (x) with period 2π is piecewise continuous in the
interval −π ≤ x ≤ π and has a left-hand derivative and right-hand
derivative at each point of that interval, then the Fourier series of f (x)
[with coefficients in Euler formulas] is convergent. Its sum is f (x), except
at a point x0 at which f (x) is discontinuous and the sum of the series is
the average of the left-and right-hand limits of f (x) at x0.
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Proof of convergence theorem

We prove convergence for a continuous function f (x) having continuous
first and second derivatives. Integrating

an =
1

π

∫ π

−π
f (x) cos nx dxn = 1, 2, · · ·

by parts, we get

an =
1

π

∫ π

−π
f (x) cos nx dx =

f (x) sin nx

nπ

∣∣∣∣π
−π
− 1

nπ

∫ π

−π
f ′ (x) sin nx dx .

The first term on the right is zero. Another integration by parts gives

an =
f ′ (x) cos nx

n2π

∣∣∣∣π
−π
− 1

n2π

∫ π

−π
f ′′ (x) cos nx dx .
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Proof of convergence theorem (contd...)

The first term on the right is zero because of the periodicity and continuity
of f ′ (x). Since f ′′ is continuous in the interval of integration, we have

|f ′′ (x) | < M

for an appropriate constant M.

Furthermore, | cos nx | ≤ 1. It follows that

|an| =
1

n2π
|
∫ π

−π
f ′′ (x) cos nx dx | < 1

n2π

∫ π

−π
M dx =

2M

n2
.
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Proof of convergence theorem (contd...)

Similarly, |bn| < 2 M/n2 for all n. Hence the absolute value of each term
of the Fourier series of f (x) is at most equal to the corresponding term of
the series

|a0|+ 2M

(
1 + 1 +

1

22
+

1

22
+

1

32
+

1

32
+ · · ·

)
which is convergent. Hence that Fourier series converges and the proof is
complete.

Note : The proof of convergence in the case of a piecewise continuous
function f (x) and the proof that under the assumptions in the theorem the
Fourier series represents f (x) are substantially more complicated.
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Square wave : Convergence at jump

Example 3.

The square wave has a jump at x = 0. Its left-hand limit there is −k and
its right-hand limit is k. Hence the average of these limits is 0. The
Fourier series

4k

π

(
sin x +

1

3
sin 3x +

1

5
sin 5x + . . .

)
.

of the square wave does indeed converge to this value when x = 0 because
then all its terms are 0. Similarly for the other jumps.
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Summary

A Fourier series of a given function f (x) of period 2π is a series of the form

a0 +
∞∑
n=1

(an cos nx + bn sin nx)

with coefficients given by the Euler formulas.

Theorem (2) gives conditions that are sufficient for this series to converge
and at each x to have the value f (x), except at discontinuities of f (x),
where the series equals the arithmetic mean of the left-hand and
right-hand limits of f (x) at that point.
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Exercises

Exercise 4.

Showing the details of your work, find the Fourier series of the function
f (x), which is assumed to have the period 2π, and plot accurate graphs of
the firs three partial sums, where f (x) equals

1. f (x) = x3 (π < x < π)

2. f (x) = x + |x | (−π < x < π)

3. f (x) =

{
1 if − π < x < 0

−1 if 0 < x < π

4. f (x) =

{
−1 if 0 < x < π/2

0 if π/2 < x < 2π

5. f (x) =

{
1 if − π/2 < x < π/2

−1 if π/2 < x < 3π/2
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Exercises

Exercise 5.

Showing the details of your work, find the Fourier series of the function
f (x), which is assumed to have the period 2π, and plot accurate graphs of
the firs three partial sums, where f (x) equals

1. f (x) =

{
x if − π/2 < x < π/2

π − x if π/2 < x < 3π/2

2. f (x) =

{
x if − π/2 < x < π/2

0 if π/2 < x < 3π/2

3. f (x) =

{
x2 if − π/2 < x < π/2

π2/4 if π/2 < x < 3π/2
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Functions of Any Period p = 2L

The functions considered so far had period 2π, for simplicity. Of course, in
applications, periodic functions will generally have other periods. But we
show that the transition from period p = 2π to period p = 2L is quite
simple. It amounts to a stretch (or contraction) of scale on the axis. If a
function f (x) of period p = 2L has a Fourier series, we claim that this
series is

f (x) = a0 +
∞∑
n=1

(
an cos

nπ

L
x + bn sin

nπ

L
x
)

(12)

with the Fourier coefficients of f (x) given by the Euler formulas

(a) a0 =
1

2L

∫ L

−L
f (x) dx

(b) an =
1

L

∫ L

−L
f (x) cos

nπx

L
dxn = 1, 2, · · ·

(c) bn =
1

L

∫ L

−L
f (x) sin

nπx

L
dxn = 1, 2, · · · .

(13)

The series with arbitrary coefficient is called a trigonometric series, and
Theorem 2 extends to any period p.
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Functions of Any Period p = 2L

Proof. By setting v = πx/L, we get x = Lv/π. Also, x = ±L corresponds
to v = ±π. Thus f , regarded as a function of v that we call g(v),

f (x) = g(v),

has period 2π. Accordingly, this 2π-periodic function g(v) has the Fourier
series

g(v) = a0 +
∞∑
n=1

(an cos nv + bn sin nv) (14)

with coefficients

a0 =
1

2π

∫ π

−π
g(v) dv

an =
1

π

∫ π

−π
g(v) cos nv dv

bn =
1

π

∫ π

−π
g(v) sin nv dv .

(15)
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Functions of Any Period p = 2L

Since v = πx/L and g(v) = f (x), formula (14) gives (1). In (15) we
introduce x = Lv/π as variable of integration.

Then the limits of integration v = ±π become x = ±L. Also, v = πx/L
implies dv = πdx/L. Thus dv/2π = dx/2L in a0. Similarly, dv/π = dx/L
in an and bn.

Hence (15) gives (13).

Interval of integration. In (13) we may replace the interval of integration
by any interval of length p = 2L, for example, by the interval 0 ≤ x ≤ 2L.
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Periodic square wave

Example 6.

Find the Fourier series of the function

f (x) =


0 if − 2 < x < −1

k if − 1 < x < 1 p = 2L = 4, L = 2.

0 if 1 < x < 2
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Periodic square wave

Solution.

a0 =
1

4

∫ 2

−2
f (x) dx =

1

4

∫ 1

−1
k dx =

k

2
.

an =
1

2

∫ 2

−2
f (x) cos

nπx

2
dx =

1

2

∫ 1

−1
k cos

nπx

2
dx =

2k

nπ
sin

nπ

2

Thus an = 0 if n is even and

an = 2k/nπ if n = 1, 5, 9, . . . , an = −2k/nπ if n = 3, 7, 11, . . . .

bn = 0 for n = 1, 2, · · · . Hence the result is

f (x) =
k

2
+

2k

π

(
cos

π

2
x − 1

3
cos

3π

2
x +

1

5
cos

5π

2
x − · · ·

)
.
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Half-wave rectifier

Example 7.

A sinusoidal voltage E sinωt, where t is time, is passed through a
half-wave rectifier that clips the negative portion of the wave. Find the
Fourier series of the resulting periodic function

u(t) =

{
0 if − L < t < 0,

E sinωt if 0 < t < L p = 2L = 2π
ω , L = π

ω .
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Periodic square wave

Solution. Since u = 0 when −L < t < 0, with t instead of x ,

a0 =
ω

2π

∫ π/ω

0
E sinωt dt =

E

π

and with x = ωt and y = nωt,

an =
ω

π

∫ π/ω

0
E sinωt cos nωt dt =

ωE

2π

∫ π/ω

0
[sin(1 + n)ωt + sin(1− n)ωt] dt.

If n = 1, the integral on the right is zero, and if n = 2, 3, . . ., we readily
obtain

an =
ωE

2π

[
−cos(1 + n)ωt

(1 + n)ω
− cos(1− n)ωt

(1− n)ω

]π/ω
0

=
E

2π

(
− cos(1 + n)π + 1

(1 + n)
+
− cos(1− n)π + 1

(1− n)

)
.
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Periodic square wave

In n is odd, this is equal to zero, and for even n we have

an =
E

2π

(
2

1 + n
+

2

1− n

)
= − 2E

(n − 1)(n + 1)π
(n = 2, 4, · · · ).

In a similar fashion we find that b1 = E/2 and bn = 0 for n = 2, 3, . . .,
Consequently.

u(t) =
E

π
+

E

2
sinωt − 2E

π

(
1

1 · 3
cos 2ωt +

1

3 · 5
cos 4ωt + · · ·

)
.
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Exercises

Exercise 8.

Find the Fourier series of the periodic function f (x), of period p = 2L, and
sketch f (x) and the first three partial sums. (Show that details of your
work.)

1. f (x) = −1 (−1 < x < 0), f (x) = 1 (0 < x < 1), p = 2L = 2

2. f (x) = 1 (−1 < x < 0), f (x) = −1 (0 < x < 1), p = 2L = 2

3. f (x) = 0 (−2 < x < 0), f (x) = 2 (0 < x < 2), p = 2L = 4

4. f (x) = |x | (−2 < x < 2), p = 2L = 4

5. f (x) = 2x (−1 < x < 1), p = 2L = 2

6. f (x) = 1− x2 (−1 < x < 1), p = 2L = 2

7. f (x) = 3x2 (−1 < x < 1), p = 2L = 2

8. f (x) = 1
2 + x (−1

2 < x < 0), f (x) = 1
2 − x (0 < x < 1

2), p = 2L = 1
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Exercises

Exercise 9.

Find the Fourier series of the periodic function f (x), of period p = 2L, and
sketch f (x) and the first three partial sums. (Show that details of your
work.)

1. f (x) = 0, (−1 < x < 0), f (x) = x (0 < x < 1), p = 2L = 2

2. f (x) = x (0 < x < 1), f (x) = 1− x (1 < x < 2), p = 2L = 2

3. f (x) = π sinπx (0 < x < 1), p = 2L = 1

4. f (x) = πx3/2 (−1 < x < 1), p = 2L = 2

5. (Rectifier) Find the Fourier series of the periodic function that is
obtained by passing the voltage v(t) = V0 cos 100πt through a
half-wave rectifier.
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Even and Odd functions Half-Range Expansions

The periodic square wave function was even and had only cosine terms in
its Fourier series, no sine terms. This is typical. In fact, unnecessary work
(and corresponding sources of errors) in determining Fourier coefficients
can be avoided if a function is even or odd.
A function y = g(x) is even if

g(−x) = g(x)for all x .

The graph of such a function is symmetric with respect to the y -axis.

A function h(x) is odd if

h(−x) = −h(x)for all x .

The function cos nx is even, while sin nx is odd.
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Three Key Facts

1. If g(x) is an even function, then∫ L

−L
g(x) dx = 2

∫ L

0
g(x) dx (g even).

2. If h(x) is an odd function, then∫ L

−L
h(x) dx = 0 (h odd).

3. The product of an even and an odd function is odd.
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Fourier cosine series, Fourier sine series

Theorem 10.

The Fourier series of an even function of period 2L is a Fourier cosine
series

f (x) = a0 +
∞∑
n=1

an cos
nπ

L
x

with coefficients

a0 =
1

L

∫ L

0
f (x) dx , an =

2

L

∫ L

0
f (x) cos

nπx

L
dx , n = 1, 2, · · · .
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Fourier cosine series, Fourier sine series

Theorem 11.

The Fourier series of an odd function of period 2L is a Fourier sine series

f (x) =
∞∑
n=1

bn sin
nπ

L
x

with coefficients

bn =
2

L

∫ L

0
f (x) sin

nπx

L
dx .
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The case of period 2π

The above theorems give for an even function simply

f (x) = a0 +
∞∑
n=1

an cos nx (f even)

with coefficients

a0 =
1

π

∫ π

0
f (x) dx , an =

2

π

∫ π

0
f (x) cos nx dx , n = 1, 2, . . . .

Similarly, for an odd 2π-periodic function we simply have

f (x) =
∞∑
n=1

bn sin nx (f odd)

with coefficients

bn =
2

π

∫ π

0
f (x) sin nx dx , n = 1, 2, . . . .
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Sum of Functions

Theorem 12.

The Fourier coefficients of a sum f1 + f2 are the sums of the corresponding
Fourier coefficients of f1 and f2. The Fourier coefficients of cf are c times
the corresponding Fourier coefficients of f .
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Rectangular pulse

The function f ∗(x) =

{
0 if − π < x < 0

2k if 0 < x < π
is the sum of the function

f (x) =

{
−k if − π < x < 0

k if 0 < x < π

and the constant k . Hence, from Theorem (12) we conclude that

f ∗(x) = k +
4k

π

(
sin x +

1

3
sin 3x +

1

5
sin 5x + · · ·

)
.
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Sawtooth wave

Example 13.

Find the Fourier series of the function

f (x) = x + π if− π < x < π and f (x + 2π) = f (x).

Solution. We may write

f = f1 + f2, where f1 = x and f2 = π.

The Fourier coefficients of f2 are zero, except for the first one (the
constant term), which is π. Hence, by Theorem 12, the Fourier
coefficients an, bn are those of f1, except for a0, which is π.
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Sawtooth wave

Since f1 is odd, an = 0 for n = 1, 2, . . ., and

bn =
2

π

∫ π

0
f1(x) sin nx dx =

2

π

∫ π

0
x sin nx dx .

Integrating by parts we obtain

bn =
2

π

[
−x cos nx

n

∣∣∣∣π
0

+
1

n

∫ π

0
cos nx dx

]
=

12

n
cos nπ.

Hence b1 = 2, b2 = −2/2, b3 = 2/3, b4 = −2/4, . . ., and the Fourier
series of f (x) is

f (x) = π + 2

(
sin x − 1

2
sin 2x +

1

3
sin 3x − · · ·

)
.
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Sawtooth wave - Partial sums
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Half-Range Expansions

Half-range expansions are Fourier series. This concerns a practically useful
simple idea. In applications we often want to employ a Fourier series for a
function f that is given only on some interval, say, 0 ≤ x ≤ L.
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Half-Range Expansions

This function f can be the displacement of a violin string of (undistorted)
length L or the temperature in a metal bar of length L, and so on. Now
the key idea is as follows.

For our function f we can calculate Fourier sine or cosine series. And we
have a choice. If we use Theorem 10, we get a Fourier cosine series. This
series represents the even periodic extension f1 of f in Fig. 270(a).

If in a practical problem we think that using Theorem 11 is better, we get
a Fourier sine series. This series represents the odd periodic extension f2
of f in Fig. 270(b). Both extensions have period 2L.

This motivates the name half-range expansions: f is given (and of
physical interest) only on half the range, half the interval of periodically of
length 2L.
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Triangle and its half-range expansions

Example 14.

Find the two half-range expansions of the function

f (x) =

{
2k
L x if 0 < x < L

2
2k
L (L− x) if L

2 < x < L.

Solution. (a) Even periodic extension. From (4) we obtain

a0 =
1

L

[
2k

L

∫ L/2

0
xdx +

2k

L

∫ L

L/2
(L− x) dx

]
=

k

2
,

an =
2

L

[
2k

L

∫ L/2

0
x cos

nπ

L
x dx +

2k

L

∫ L

L/2
(L− x) cos

nπ

L
x dx

]
.
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Triangle and its half-range expansions

We consider an. For the first integral we obtain by integration by parts∫ L/2

0
x cos

nπ

L
x dx =

Lx

nπ
sin

nπ

L
x

∣∣∣∣L/2
0

− L

nπ

∫ L/2

0
sin

nπ

L
x dx

=
L2

2nπ
sin

nπ

2
+

L2

n2π2

(
cos

nπ

2
− 1
)
.

Similarly, for the second integral we obtain∫ L

L/2
(L− x) cos

nπ

L
x dx =

L

nπ
(L− x) sin

nπ

L
x

∣∣∣∣L
L/2

+
L

nπ

∫ L

L/2
sin

nπ

L
x dx

= − L

nπ

(
L− L

2

)
sin

nπ

2
− L2

n2π2

(
cos nπ − cos

nπ

2

)
.
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Triangle and its half-range expansions

We insert these two results into the formula for an. The sine terms cancel
and so does a factor L2. This gives

an =
4k

n2π2

(
2 cos

nπ

2
− cos nπ − 1

)
.

Thus,

a2 = −16k/22π2, a6 = −16k/62π2, a10 = −16k/102π2, . . . ,

and an = 0 if n 6= 2, 6, 10, 14, . . .. Hence the first half-range expansion of
f (x) is

f (x) =
k

2
− 16k

π2

(
1

22
cos

2π

L
x +

1

62
cos

6π

L
x + · · ·

)
.

This Fourier cosine series represents the even periodic extensions of the
given function f (x), of period 2L, shown in Fig 270(a).
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Triangle and its half-range expansions

(b) Odd periodic extension. Similarly, we obtain

bn =
8k

n2π2
sin

nπ

2
. (16)

Hence the other half-range expansion of f (x) is

f (x) =
8k

π2

(
1

12
sin

π

L
x − 1

32
sin

3π

L
x +

1

52
sin

5π

L
x −+ · · ·

)
.

This series represents the odd periodic extension of f (x), of period 2L,
shown in Fig. 270(b).
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Exercises

Exercises 15.

1. Even and Odd Functions : Are the following functions odd, even, or
neither odd nor even?

(a) |x3|, x cos nx, x2 cos nx, cos hx, sin hx, sin x + cos x, x |x |
(b) x + x2, |x |, ex , ex

2

, sin2 x, x sin x, ln x, x cos x, e−|x |
2. Are the following functions f (x), which are assumed to be periodic, of

period 2π, even, odd or neither even nor odd?

(a) f (x) = x2 (0 < x < 2π)
(b) f (x) = x4 (0 < x < 2π)
(c) f (x) = e−|x| (−π < x < π)
(d) f (x) = |sin5x | (−π < x < π)

(e) f (x) =

{
0 if 2 < x < 2π − 2

x if − 2 < x < 2

(f) f (x) =

{
cos2 x if − π < x < 0

sin2 x if 0 < x < π

(g) f (x) = x3 (−π/2 < x < 3π/2)
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Exercises

Exercises 16.

1. Are the following expressions even or odd? Sums and products of
even functions and of odd functions. Products of even times odd
functions. Absolute values of odd functions. f (x) + f (−x) and
f (x)− f (−x) for arbitrary f (x).

2. Write ekx , 1/(1− x), sin(x + k), cosh(x + k) as sums of an even and
an odd function.

3. Find all functions that are both even and odd.

4. Is cos3 x even or odd? sin3 x? Find the Fourier series of these two
functions. Do you recognize familiar identities?
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Exercises

Exercises 17.

State whether the given function is even or odd. Find its Fourier series.
Sketch the function and some partial sums.

1. f (x) =

{
k if − π/2 < x < π/2

0 if π/2 < x < 3π/2

2. f (x) =

{
−2x if − π < x < 0

2x if 0 < x < π

3. f (x) =

{
x if − π/2 < x < π/2

π − x if π/2 < x < 3π/2.

4. f (x) =

{
x if 0 < x < π

π − x if π < x < 2π

5. f (x) = x2/2 (−π < x < π)

6. f (x) = 3x(π2 − x2) (−π < x < π)
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Exercises

Exercises 18.

Show that

1. 1− 1
3 + 1

5 −
1
7 + · · · = π

4 .

2. 1 + 1
4 + 1

9 + 1
16 + 1

25 + · · · = π2

6 .

3. 1− 1
4 + 1

9 −
1
16 + · · · = π2

12 .
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Exercises

Exercises 19.

Find the Fourier cosine series as well as the Fourier sine series. Sketch
f (x) and its two periodic extensions.

1. f (x) = 1 (0 < x < L)

2. f (x) = x (0 < x < L)

3. f (x) = x2 (0 < x < L)

4. f (x) = π − x (0 < x < π)

5. f (x) = x3 (0 < x < L)

6. f (x) = ex (0 < x < L)
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